255 research outputs found

    Gravitational multipole moments from Noether charges

    Full text link
    We define the mass and current multipole moments for an arbitrary theory of gravity in terms of canonical Noether charges associated with specific residual transformations in canonical harmonic gauge, which we call multipole symmetries. We show that our definition exactly matches Thorne's mass and current multipole moments in Einstein gravity, which are defined in terms of metric components. For radiative configurations, the total multipole charges -- including the contributions from the source and the radiation -- are given by surface charges at spatial infinity, while the source multipole moments are naturally identified by surface integrals in the near-zone or, alternatively, from a regularization of the Noether charges at null infinity. The conservation of total multipole charges is used to derive the variation of source multipole moments in the near-zone in terms of the flux of multipole charges at null infinity.Comment: v1: 22 pages + 13 pages of appendices, 1 figure; v2: published version in JHE

    Near Horizon Extremal Geometry Perturbations: Dynamical Field Perturbations vs. Parametric Variations

    Get PDF
    In arXiv:1310.3727 we formulated and derived the three universal laws governing Near Horizon Extremal Geometries (NHEG). In this work we focus on the Entropy Perturbation Law (EPL) which, similarly to the first law of black hole thermodynamics, relates perturbations of the charges labeling perturbations around a given NHEG to the corresponding entropy perturbation. We show that field perturbations governed by the linearized equations of motion and symmetry conditions which we carefully specify, satisfy the EPL. We also show that these perturbations are limited to those coming from difference of two NHEG solutions (i.e. variations on the NHEG solution parameter space). Our analysis and discussions shed light on the "no-dynamics" statements of arXiv:0906.2380 and arXiv:0906.2376.Comment: 38 page

    Extremal Rotating Black Holes in the Near-Horizon Limit: Phase Space and Symmetry Algebra

    Get PDF
    We construct the NHEG phase space, the classical phase space of Near-Horizon Extremal Geometries with fixed angular momenta and entropy, and with the largest symmetry algebra. We focus on vacuum solutions to dd dimensional Einstein gravity. Each element in the phase space is a geometry with SL(2,R)×U(1)d−3SL(2,\mathbb R)\times U(1)^{d-3} isometries which has vanishing SL(2,R)SL(2,\mathbb R) and constant U(1)U(1) charges. We construct an on-shell vanishing symplectic structure, which leads to an infinite set of symplectic symmetries. In four spacetime dimensions, the phase space is unique and the symmetry algebra consists of the familiar Virasoro algebra, while in d>4d>4 dimensions the symmetry algebra, the NHEG algebra, contains infinitely many Virasoro subalgebras. The nontrivial central term of the algebra is proportional to the black hole entropy. This phase space and in particular its symmetries might serve as a basis for a semiclassical description of extremal rotating black hole microstates.Comment: Published in PLB, 5 page

    Symplectic and Killing Symmetries of AdS3_3 Gravity: Holographic vs Boundary Gravitons

    Full text link
    The set of solutions to the AdS3_3 Einstein gravity with Brown-Henneaux boundary conditions is known to be a family of metrics labeled by two arbitrary periodic functions, respectively left and right-moving. It turns out that there exists an appropriate presymplectic form which vanishes on-shell. This promotes this set of metrics to a phase space in which the Brown-Henneaux asymptotic symmetries become symplectic symmetries in the bulk of spacetime. Moreover, any element in the phase space admits two global Killing vectors. We show that the conserved charges associated with these Killing vectors commute with the Virasoro symplectic symmetry algebra, extending the Virasoro symmetry algebra with two U(1)U(1) generators. We discuss that any element in the phase space falls into the coadjoint orbits of the Virasoro algebras and that each orbit is labeled by the U(1)U(1) Killing charges. Upon setting the right-moving function to zero and restricting the choice of orbits, one can take a near-horizon decoupling limit which preserves a chiral half of the symplectic symmetries. Here we show two distinct but equivalent ways in which the chiral Virasoro symplectic symmetries in the near-horizon geometry can be obtained as a limit of the bulk symplectic symmetries.Comment: 39 pages, v2: a reference added, the version to appear in JHE

    Wiggling Throat of Extremal Black Holes

    Get PDF
    We construct the classical phase space of geometries in the near-horizon region of vacuum extremal black holes as announced in [arXiv:1503.07861]. Motivated by the uniqueness theorems for such solutions and for perturbations around them, we build a family of metrics depending upon a single periodic function defined on the torus spanned by the U(1)U(1) isometry directions. We show that this set of metrics is equipped with a consistent symplectic structure and hence defines a phase space. The phase space forms a representation of an infinite dimensional algebra of so-called symplectic symmetries. The symmetry algebra is an extension of the Virasoro algebra whose central extension is the black hole entropy. We motivate the choice of diffeomorphisms leading to the phase space and explicitly derive the symplectic structure, the algebra of symplectic symmetries and the corresponding conserved charges. We also discuss a formulation of these charges with a Liouville type stress-tensor on the torus defined by the U(1)U(1) isometries and outline possible future directions.Comment: 56 pages, 3 figure

    Crystal structure of 4,4-dimethyl-2-(trifluoromethyl)-4,5-dihydro-1H-imidazole, C6H9F3N2

    Get PDF
    C6H9F3N2, monoclinic, P21/n (no. 14), a = 10.6224(9) Å, b = 11.8639(9) Å, c = 13.3139(11) Å, β = 105.903(3)°, V = 1613.6(2) Å3, Z = 8, Rgt(F) = 0.0618, wRref(F2) = 0.1629, T = 102(2) K [1–3]

    Soft Charges and Electric-Magnetic Duality

    Full text link
    The main focus of this work is to study magnetic soft charges of the four dimensional Maxwell theory. Imposing appropriate asymptotic falloff conditions, we compute the electric and magnetic soft charges and their algebra both at spatial and at null infinity. While the commutator of two electric or two magnetic soft charges vanish, the electric and magnetic soft charges satisfy a complex U(1)U(1) current algebra. This current algebra through Sugawara construction yields two U(1)U(1) Kac-Moody algebras. We repeat the charge analysis in the electric-magnetic duality-symmetric Maxwell theory and construct the duality-symmetric phase space where the electric and magnetic soft charges generate the respective boundary gauge transformations. We show that the generator of the electric-magnetic duality and the electric and magnetic soft charges form infinite copies of iso(2)iso(2) algebra. Moreover, we study the algebra of charges associated with the global Poincar\'e symmetry of the background Minkowski spacetime and the soft charges. We discuss physical meaning and implication of our charges and their algebra.Comment: 41 pages, 4 figures; published version in JHE

    Oro-Dental Health Status and Salivary Characteristics in Children with Chronic Renal Failure

    Get PDF
    Children suffering from decreased renal function may demand unique considerations regarding special oral and dental conditions they are encountered to. It is mentioned that renal function deterioration may affect the hard or soft tissues of the mouth. Having knowledge about the high prevalence of dental defects, calculus, gingival hyperplasia, modified salivary composition and tissue responses to the dental plaque may aid the physician and the dentist to help nurture the patient with chronic renal failure through the crisis, with an aesthetically satisfying and functioning dentition
    • …
    corecore